Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Cell suspension fluidics, such as flow cytometry (FCS) and fluorescence-activated cell sorting (FACS), facilitates the identification and precise separation of individual cells based on phenotype. Since its introduction, flow cytometry has been used to analyze cell types and cellular processes in diverse non-vertebrate taxa, including cnidarians, molluscs, and arthropods. Ctenophores, which diverged very early from the metazoan stem lineage, have emerged as an informative clade for the study of metazoan cell type evolution. We present standardized methodologies for flow cytometry-mediated identification and analyses of cells from the model ctenophoreMnemiopsis leidyithat can also be applied to isolate targeted cell populations. Here we focus on the identification and isolation of ctenophore phagocytes. Implementing flow cytometry methods in ctenophores allows for fine scale analyses of fundamental cellular processes conserved broadly across animals, as well as potentially revealing novel cellular phenotypes and behaviors restricted to the ctenophore lineage.more » « less
-
Abstract Corals are important models for understanding invertebrate host–microbe interactions; however, to fully discern mechanisms involved in these relationships, experimental approaches for manipulating coral–bacteria associations are needed. Coral‐associated bacteria affect holobiont health via nutrient cycling, metabolic exchanges and pathogen exclusion, yet it is not fully understood how bacterial community shifts affect holobiont health and physiology. In this study, a combination of antibiotics (ampicillin, streptomycin and ciprofloxacin) was used to disrupt the bacterial communities of 14 colonies of the reef framework‐building corals Pocillopora meandrina and P . verrucosa, originally collected from Panama and hosting diverse algal symbionts (family Symbiodiniaceae ). Symbiodiniaceae photochemical efficiencies and holobiont oxygen consumption (as proxies for coral health) were measured throughout a 5‐day exposure. Antibiotics altered bacterial community composition and reduced alpha and beta diversity, however, several bacteria persisted, leading to the hypothesis that these bacteria are either antibiotics resistant or occupy internal niches that are shielded from antibiotics. While antibiotics did not affect Symbiodiniaceae photochemical efficiency, antibiotics‐treated corals had lower oxygen consumption rates. RNAseq revealed that antibiotics increased expression of Pocillopora immunity and stress response genes at the expense of cellular maintenance and metabolism functions. Together, these results reveal that antibiotic disruption of corals' native bacteria negatively impacts holobiont health by decreasing oxygen consumption and activating host immunity without directly impairing Symbiodiniaceae photosynthesis, underscoring the critical role of coral‐associated bacteria in holobiont health. They also provide a baseline for future experiments that manipulate Pocillopora corals' symbioses by first reducing the diversity and complexity of coral‐associated bacteria.more » « less
-
Climate change is radically altering coral reef ecosystems, mainly through increasingly frequent and severe bleaching events. Yet, some reefs have exhibited higher thermal tolerance after bleaching severely the first time. To understand changes in thermal tolerance in the eastern tropical Pacific (ETP), we compiled four decades of temperature, coral cover, coral bleaching, and mortality data, including three mass bleaching events during the 1982 to 1983, 1997 to 1998 and 2015 to 2016 El Niño heatwaves. Higher heat resistance in later bleaching events was detected in the dominant framework-building genus, Pocillopora, while other coral taxa exhibited similar susceptibility across events. Genetic analyses of Pocillopora spp . colonies and their algal symbionts (2014 to 2016) revealed that one of two Pocillopora lineages present in the region ( Pocillopora “ type 1”) increased its association with thermotolerant algal symbionts ( Durusdinium glynnii ) during the 2015 to 2016 heat stress event. This lineage experienced lower bleaching and mortality compared with Pocillopora “type 3”, which did not acquire D. glynnii . Under projected thermal stress, ETP reefs may be able to preserve high coral cover through the 2060s or later, mainly composed of Pocillopora colonies that associate with D. glynnii . However, although the low-diversity, high-cover reefs of the ETP could illustrate a potential functional state for some future reefs, this state may only be temporary unless global greenhouse gas emissions and resultant global warming are curtailed.more » « less
-
Climate change induced heat stress has increased coral bleaching events worldwide. Differentially regulated immune genes are one of the primary responses to heat stress suggesting that immune activation is critical. However, the cellular immune mechanisms of coral bleaching is currently unknown, and it is still not known if the immune response documented during heat stress is a consequence of bleaching or is directly caused by the heat stress itself. To address this question, we have used two model system sea anemones (Order: Actiniaria): Exaiptasia diaphana and Nematostella vectensis . E. diaphana is an established sea anemone model for algal symbiont interaction, while N. vectensis is an established sea anemone model that lacks the algal symbiont. Here, we examined the effect of increased temperature on phagocytic activity, as an indication of immune function. Our data shows that immune cell activity increases during heat stress, while small molecule pinocytosis remains unaffected. We observed an increase in cellular production of reactive oxygen species with increasing temperatures. We also found that the cellular immune activity was not affected by the presence of the Symbiodiniaceae. Our results suggest that the immune activity observed in heat-stress induced bleaching in corals is a fundamental and basic response independent of the bleaching effect. These results establish a foundation for improving our understanding of hexacorallian immune cell biology, and its potential role in coral bleaching.more » « less
-
Phagocytosis is the cellular defense mechanism used to eliminate antigens derived from dysregulated or damaged cells, and microbial pathogens. Phagocytosis is therefore a pillar of innate immunity, whereby foreign particles are engulfed and degraded in lysolitic vesicles. In hexacorallians, phagocytic mechanisms are poorly understood, though putative anthozoan phagocytic cells (amoebocytes) have been identified histologically. We identify and characterize phagocytes from the coral Pocillopora damicornis and the sea anemone Nematostella vectensis . Using fluorescence-activated cell sorting and microscopy, we show that distinct populations of phagocytic cells engulf bacteria, fungal antigens, and beads. In addition to pathogenic antigens, we show that phagocytic cells engulf self, damaged cells. We show that target antigens localize to low pH phagolysosomes, and that degradation is occurring within them. Inhibiting actin filament rearrangement interferes with efficient particle phagocytosis but does not affect small molecule pinocytosis. We also demonstrate that cellular markers for lysolitic vesicles and reactive oxygen species (ROS) correlate with hexacorallian phagocytes. These results establish a foundation for improving our understanding of hexacorallian immune cell biology.more » « less
-
Since 2014, corals within Florida’s Coral Reef have been dying at an unprecedented rate due to stony coral tissue loss disease (SCTLD). Here we describe the transcriptomic outcomes of three different SCTLD transmission experiments performed at the Smithsonian Marine Station and Mote Marine Laboratory between 2019 and 2020 on the corals Orbicella faveolata and Montastraea cavernosa. Overall, diseased O. faveolata had 2194 differentially expressed genes (DEGs) compared with healthy colonies, whereas diseased M. cavernosa had 582 DEGs compared with healthy colonies. Many significant DEGs were implicated in immunity, extracellular matrix rearrangement, and apoptosis. These included, but not limited to, peroxidases, collagens, Bax-like, fibrinogen-like, protein tyrosine kinase, and transforming growth factor beta. A gene module was identified that was significantly correlated to disease transmission. This module possessed many apoptosis and immune genes with high module membership indicating that a complex apoptosis and immune response is occurring in corals during SCTLD transmission. Overall, we found that O. faveolata and M. cavernosa exhibit an immune, apoptosis, and tissue rearrangement response to SCTLD. We propose that future studies should focus on examining early time points of infection, before the presence of lesions, to understand the activating mechanisms involved in SCTLD.more » « less
An official website of the United States government
